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Abstract design environments or office automation. The

_ _ _ inability of traditional transaction management
Long-duration transactions play an important rot%HGS?] to support long-duration transactions
in non-standard database applications like desigas already been observed by [Gra81] and was
environments or office automation. This PapP§fa motivation for the development of a num-

deals with recovery for long-duration transaCtion%er of non-standard transaction models (for an
We start with a discussion of approaches presentad, .\ ia\v see e .. [BK91] or [EIm92])
in literature and show why these solutions are not ’ e .

sufficient. We then introduceelective recovery. This _pap_er fOCl_JseS omecoyery for long- )
The main advantage of this approach is that orﬁgpratlon interactive tra_nsactlons. The g_oal is
that part of work is considered that is directly afl0 gl_Jaran_tee that as I'tt_le work as_ _pPSS'b'e IS
fected by a failure (first step). In order to guaranté@_s’t if a failure occurs _W'thOUt sacrlflglng Con'
consistency, however, it must be checked if furthgistency. However, this means to_ S_k'p th_e S|m-
work is indirectly affected and therefore must lee and elegant concept of atomicity which is

invalidated, too (second step). This is decided me base of the traditional transaction model.

evaluating information about operations performethe idea we present will be called ective re-

on the data and information about the relationshigsvery. With this approach, first that part of

between objects. The approach is especially tarork is considered that idirectly affected by

lored to object-oriented database systems. the failure. Other work, even if performed after
the erroneous work, will be preserved if possi-

Keywords: Non-Standard Transaction Managemerp,le- In order to assure consistency, however, it

Recovery, Object-Oriented Database Management S%USt then be checked Wh_ether this worknis
tems directly affected by the failure and, therefore,

must be invalidated, too. This is decided by
evaluating information about operations per-

1 Overview formed on the data and information about the
relationships between objects.

Long-duration transactions play an importaelective recovery is a new recovery tech-
role in non-standard database applications lik@yue for long-duration and interactive trans-

*Cooperative Computing & Communication Laboacnons' It also allows to supporto-

ratory (Siemens Nixdorf Informationssysteme AG, UnPperation between transactions more effec-
versitat-GH Paderborn) tively since it minimizes the negative ef-
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savepoint

fects of cascading rollback. The applica
tion area we assume are design applica- |
tions [MZU94] which rely on object-oriented modifications
database management systems (OODBMS).

: modify A modify B modify C

|
The concept has been implemented in a proto- |

|

I

partial rollback

type called BDEST (“ProgrammableDbject-
orientedDesign Transaction System”).

First, we discuss how other approaches deal
with the problem of recovery and why the pre- Figure 1. Partial Rollback
sented solutions are not sufficient. We then
introduce our approach of selective recovepn the respective object is lost but no other
(section 3). In particular, we discuss severafork. However, objects are not simple entities
kinds of dependencies which have to be exdat are independent of each other. First, ob-
mined in order to achieve consistency. In sei@cts are connected to other objects by relation-
tion 4 we show how the model can be extendstips, especially in data models like the entity-
in various directions. relationship [Che76] or the object-oriented
model [ABD"89]. Objects can also be related
due to complex operations which read or write
2 Related Work more than one object (figure 2). For these rea-
sons, a rollback of single objects can lead to
Conventional recovery [HR83, BHG87] hansevere inconsistencies which, in these transac-
dles different kinds of failures, e.g., procesion models, have to be recognized and treated
crashes or disk failures. The techniques devel the user. A dual problem is therema-
oped there (e.g., logging) can also be appliegre release of single objects which was pro-
to long-duration transactions. However, logposed to support cooperation between transac-
cal transaction failures like exceptions withitions [KSUW85]: because of the above rea-
an application, erroneous user inputs or integens a transaction accessing a released object
tional rollbacks require more sophisticated apay get an inconsistent view of the database.
proaches which are the topic of this paper. When a transaction aborts which had already

A fairly traditional way which can also supporfeleased some objects, either cascading roll-
long-duration transaction recovery is the s&ack has to be performed, or the transaction
calledpartial rollback [HR87]. Here, a save-can only roll back part of its work leaving all
point is set to which a transaction can be rollégleased objects valid which again may lead to
back in case of a failure. The problem with thi@n Inconsistency.

approach is that the rollback invalidatds the

work performed after the savepoint (figure 1). . modify A and B
It is not possible to restrict the rollback to that objects /

part of work that isreally affected by the fail- @ @
ure and to preserve the other work. 2 =
From the papers on long-duration transactions Q -——— Q
only few discuss recovery issues in more de- @ ot siects
tail. Instead, most of the work focuses on con-

currency control.
. Figure 2: Rollback of Objects
Some approaches propose ral back sin-

gle objects only (e.g., [KLMP84, RRR88]). The concept ofplit transactions [PKH88] di-
This has the advantage that only the woikdes the objects a transaction has accessed
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into subsets and assigns them to independedovery may lead to the loss of whole Con-
transactions which can individually commit offracts or at least of large parts. Addition-

abort. Thus, itis possible to roll back a part dlly, the specification of preconditions requires
the original transaction and commit the oth&onTracts to be pre-planned which is often not
part. The subsets have to be disjoint, i.@esirable for applications as the ones consid-
it must again be taken into account that olered in this paper.

jects can be related in some way or that opejd- ine following we will show how our ap-

tions spanning more than one object were Pefiach to recovery for long-duration transac-
formed. The model does not explicitly providgons differs from the above solutions.
mechanisms for checking these conditions.

The approach of [NRZ92] works by describ- )

ing the consistency requirements for transad Selective Recovery

tions throughgrammar rules. Single opera-

tions can be rolled back which is done recuB.1 Main |ldea of Selective Re-
sively until, finally, the grammar rules are ful- covery

filled again. Thus, consistency is guaranteed

not only for normal work but also after recoRecovery for long-duration transactions obvi-
very. While this is a very elegant approacbusly requires to give up atomicity, i.e., to deal
it has the disadvantage that it requires a laith a finer granularity than a transaction. In
of specification effort. In order to guaranteerder to guarantee consistency this requires to
consistency, the workflow and the constraingvaluate additional information about how the
on data must be specified precisely. This spebjects resp. the operations of a transaction are
cification, however, is very difficult for open-related, an aspect not considered by most other
ended interactive transactions. transaction models. The additional informa-

Some approaches (e.g., [KLS90, WS92]) prggn may be derived from existing_informa_ti_on
posecompensation in order to undo certainSOUrces or may have to be specified explicitly.
operations while keeping the results of oth€ur approach offers two mechanisms. First, it
operations. This works well as long as permits to perform recovery in a selective way,
can be guaranteed that future operations ake., to roll back only parts of a transaction,
serve certain commutativity constraints, whiciind still guarantees that the consistency con-
iS a very strong restriction. If this restrictiorstraints are obeyed (by evaluating additional
cannot be guaranteed, as, e.g., in ®@an- information). Second, it permits to specify
Tracts model [WR92], cascading compensapplication-specific information in order to in-
tion may occur. Here, a step (s&) within fluence the recovery process. These two mech-
a long-duration transaction (ConTract) is amnisms are meant to be used by programmers
notated with a precondition. When the precomtho write tools (like editors) for design envi-
dition gets invalidated because of some oth@nments. Those programmers may then offer
event in a concurrent ConTract stépmust the end user, i.e., the designer, flexible ways to
be rolled back. However, if the ConTract hagcover from errors. Technically, in our pro-
already performed further steps aft8r the totype RODEST we have developed a class li-
whole ConTract must be rolled back to thdirary for an object-oriented programming lan-
point, since there may be causal dependejuage. Thus, the tool programmer can make
cies between steps (i.e., there is a control flayge of design transaction management func-
within the ConTract). Causality must be agsionality in the same language used to imple-
sumed because there is no further informatioment the tool.

about how steps are based on each other. Thus,
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3.2 Basic Assumptions classes (with some extensions), and methods

_ _ ) _ are written as normal C++ code.
We start with a simple model which will be ex-

tended later: a flat design transaction performs

methods on objects of an OODBMS. The r&.3 Introduction to Selective
covery technique we consider is the rollback Recovery

of modifications. The design transaction does

not exchange data with other transactions (d8ow we discuss the concept efiective re-
operation is deferred to section 4.3). covery. Most transaction models assume that

As an example we use a simplified sc&N operation is alwaysausally dependent on

nario from the area of software design. W%II earlier operations of the same transaction.

assume that the design objects manipulat'é(ar this reason, a rollback has to be performed

within the software design environment ar%ompletely or partially “from the end”. Espe-

programs, modules, procedure interfaces and cially in interactive environments, the assump-
procedure implementations (figure 3). These tion of causality is too st_rong. A_designer may
objects are connected by relationships: a p@gecutﬁ adset O:; operatlonshwhrl]ch are not ne-
gram contains Several modules, a modul&essarily dependent on each other.

contains procedure interfaces and procedur%xarnple 3.1: A designer changes two in-
implementations, a procedure implementatio&ependent procedure interfaces 2 and  (fig-
belongs-to a certain procedure interface and, o 4). Then he adapts procedure imple-
mayuse other procedure interfaces. Thus, Wenentation c to the changes of a. A rollback
have to consider complex objectsoftains-  of procedure interface a invalidates proce-
relationships) and objects linked by arbitrangure implementation c, but not procedure in-

relationships. terface B. A rollback of procedure interface
B does not invalidate procedure implementa-
Program tion c.
contains modify modify modify
L Proclf A Proclf B Procimpl C
modifications
Module
recovery _ N
contains—if contains—impl selective rollback N -
\Ea;cade because Procimpl C
Proclf Procimpl uses changes of Proclf A
belongs-to
Figure 4: Causality of Modifications
uses

Figure 3: Example Scenario The goal of selective recovery is to roll back
only those parts of a transaction that egally
The specific architecture of the OODBMS isffected by the failure, i.e., a transaction as a
not relevant for our discussion. However, thehole is no longer the unit of recovery. This
OODBMS is assumed to provide an interfadeads to two questions:

integrated with an object-oriented program-5 \ynat are suitableecovery unitsinstead?

ming language. In this paper, we use the CHpy What consistency guarantees can be gi-

embedding as defined by the ODMG-Standard ven under such circumstances?
[Cat94]. Thus, the schema is defined by C++ '

10ther possibilities are, e.g., the execution of alter-
natives or manual/automatic repair of inconsistencies.
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Two recovery units are conceivable: dures of a module in order to change a
O object-based recovery variable name, a rollback of a single pro-
The state of an object is rolled back to an  ¢edure would lead to a semantic incon-
earlier point in time. All work on the ob- sistency.
ject performed after this point in time is 5 ghema consistency

lost. For this reason we also call this ap- It should not be possible to roll back ob-

proachpartially-selective recovery. jects selectively in such a way that the
O operation-based recovery schema consistency is violated.

An operation is rolled back by execut-

ing an inverse (compensating) operation. Example 3.3: If a new proce-

Changes performed later on the affected dure was inserted into a module, and
objects are only lost if they (recursively) the belongs-to relatlo_nshlp betwe_en
depend on the compensated operation. procedure interface and implementation

Thus, this approach can be described as &S established, a rollback of the in-
fully-selective recovery. terface only would violate referential in-

tegrity because the implementation still
These two perspectives seem to be relatively references the interface.
independent. However, as will be seen in
the following, they have common characteri§-onventional transaction management guaran-
tics. For example, object-based recovery htges these kinds of consistency by rolling back
to consider the operations performed on tig@nsactions completely or partially (through
object. We will discuss object-based recovetie assumption of causality). Other transaction
in this section and shortly mention operatiorinodels (section 2) offer more flexibility but ig-
based recovery in section 4.4. nore the above consistency requirements. Our
proach permits a selective rollback of parts
a transaction and exploits further informa-
lon in order to determine if more parts of the
%qnsaction are affected by the failure. In other
generally serve asonsistency units because words,_th(_e system de_udes_ i _the assumption of
causality is really valid. This is the fundamen-

0 objects may be related to other objects, ) jitterence to other transaction models (sec-
0 there may be dependencies between opgy, 2).

rations performed within a transaction.

In contrast to the classical transaction mo
where the transaction is the unit of recove
and consistency, the two recovery units me
tioned above (objects and operations) can

Information about causality is partly present in

Thus, it is necessary to perform a kind of caghe system anyway (e.g., information about re-

cading rollbacknithin a transaction in order tolationships between objects). Additional infor-

reach a consistent state. Therefore, we canation may be provided by the tool program-

sider the following two consistency requiremer explicitly. If the information is not pre-

ments: cise enough, heuristic decisions are made. In

O operation consistency such a case the designer has to correct poten-

Whenever operations are executed whitial inconsistencies manually which is mostly
affect more than one object it should nd@cceptable in interactive environments. How-
be possible to roll back in such a way tha&ver, the system uses as much information as
parts of the operations survive while othpossible in order to determine the causality au-
ers are rolled back. tomatically.

Example 3.2:  When the designer ex- %if transactions are programmed correctly
ecutes a global substitute for all proce-
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op2(A)

A omas) A
®) )
©

@
op3(B’, C) @
©

point 1 point 2

time

Figure 5: Example for Complex Operations

The information relevant for selective recovenpack to point 1 (state a), 8" must be rolled
is represented bgependencies. Dependen- back, too (state B), which finally leads to a
cies are either uni- or bidirectional. In the firstrollback of ¢ (state c). If " is rolled back to
case, an object is dependent on another one R@int 2 (state A7), neither 3’ nor B nor c-
not vice versa. An object is invalidated if thear® concerned. If " is rolled back to point
object it depends on is invalidated. In the sec? (Staté B7), ¢* must be rolled back, too, but
ond case, invalidation takes place in either dit" ¢an be kept.

rection.

When writing the methods, the tool program-

We now ShOW in more detail how to .determinﬁ]er has to specify which operations form an
dependencies and perform cascading rollbagiomic unit. Therefore, we introduce language

within a long-duration transaction.

3.4 Dependencies caused by
Complex Operations

A long-duration transaction performs a

elements to begin and to end a complex opera-
tion. Examples are listed in figure 6.

Complex operations may cause uni- or bidirec-
tional dependencies between two or more ob-
jects.

S€-0 unidirectional dependencies

quence of operations. In an object-oriented en-  An operation reads an object (which was

vironment, an operation is a method on an

ob- modified by an earlier operation) and

ject which may call methods on the same or \rites another object. If the first object
other objects. Whenever an operation touches s rolled back, the second object must be

more than one object, we call itaamplex op-

rolled back, too. However, if the second

eration (e.g.,op1 andop3 in figure 5). Such  object is rolled back, the first object does

operations should be executed atomically,

I.e., not have to be considered, even if it was

either completely or not at all. Thus, the execu- modified later on.

tion of such an operation links together the par-

ticipating objects in such a way that they have ~Example 3.5: A procedure interface
to be treated as a unit by the recovery manage- © Whichanew parameter was added by

ment. This not only holds when the operation
is executed (which is the conventional atomic-
ity property), but alsaafter it has terminated

successfully.

Example 3.4: In figure 5, three modifi-
cation operations (each of which forms an
atomic unit) are performed. If a» is rolled

an earlier operation is read, and a pro-
cedure implementation using this inter-
face is adapted by adding a new actual
parameter. When the interface is rolled
back, the implementation becomes in-
valid. A rollback of the implementation,
however, is not relevant for the interface.
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begin_complex_op () ;

proc_if.read_parms(...);

end_complex_op () ;

begin_complex_op () ;

{

}

end_complex_op () ;

proc_impl.add_new _parm to_proc_call(...);

for all proc_impl contained in module
// scan all procedure implementations

proc_impl.substitute (namel, name2) ;

Figure 6: Unidirectional and Bid

0 bidirectional dependencies to

irectional Dependencies

be treated in an atomic way. However, there

An operation modifies several objects. Aay be further dependencies caused by rela-
rollback of one of these objects must leatbnships which will be discussed next.

to a rollback of the other objects and vice
versa. 3

Example 3.6: A global substitute
of a variable name by another name is
performed on all procedure implemen-
tations of a module. A rollback of a
single procedure implementation invali-
dates the other ones.

of

5 Dependencies caused by
Object Relationships

The schema permits to define different kinds

relationships between objects. The most

important one is thecontains-relationship
which leads to the construction of complex ob-

_ jects (figure 7).
The system records the dependencies between

the considered objects. Since it knows whetH
objects are read or written it can decide if th
dependencies are uni- or bidirectional. In ca
of the rollback of an object to a point befor
the execution of a certain complex operatig
the system performs cascading rollback of &
objects which are dependent on the object [
cause of this complex operation. The adg
tional logging and the determination of depe
dent objects in case of selective rollback ake

n

)13-

%Bmplex object
B
Module M :
contains—if/impl l
\ |
Proclf A | |Procimpl Al | Proclf B | [Procimpl B :
|
|
|
|
|

belongs—Tto belongs—to

the main differences to conventional recovery.

Complex operations may also modify relation-
ships between objects. Since a partial mogl-

Figure 7: Example for a Complex Object

an object is rolled back that contains other

fication of a relationship may lead to schemgyjects, it makes sense to roll back the inner

violations, these operations, by default, have
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Module: :add_procedure (procIf, procImpl)
{

contains-if += procIf; // set the relationship
set_dependency (REL-UNIDIRECTIONAL,

this, procIf); // set the dependency
contains-impl += procImpl; // set the relationship
set_dependency (REL-UNIDIRECTIONAL,

this, procImpl) ; // set the dependency

procImpl.set_belongs_to (procIf) ;
}

ProcImpl::set_belongs_to (procIf)
{

belongs-to = procIf; // set the relationship
set_dependency (REL-BIDIRECTIONAL,
this, procIf); // set the dependency

Figure 8: Example for Specifying Dependencies

objects, too. This behaviour may also be desir- face and implementation to be consis-
able for arbitrary relationships which combine  tent, e.g., with respect to the number of
objects to logical units. Thus, it must be spec-  formal parameters. Thus, if a transac-

ified which relationships lead to a treatment of ~ tion modifies both objects, the relation-
objects as a unit. ship may be taken as a hint to always

. . . roll back both objects.
Relationships can be the source of unidirec-

tional and bidirectional dependencies: The specification of dependencies is done on
O unidirectional dependencies the language level, again. The tool program-
The semantics of the relationship is asyrter has to set the desired dependencies when-
metric, i.e., it holds in one direction bugyer relationships are inserted or deleted. This
not in the other one. is done by inserting special calls into the code
(or more conveniently by overloading the op-
mentation uses a certain procedure in- eratqrs _dealing with rela_tionships). For exam-
terface, a rollback of the interface may ple, in figure 8 the relationshipontains-if
invalidate the modifications of the imple- ~ @Nd contains-impl between a module and
mentation. On the other hand, a roll- @ New procedure interface/implementation are
back of the implementation does notin- Set, leading to unidirectional dependencies.
fluence the interface because the uses- Afterwards, the relationshipelongs-to be-
relationship is asymmetric. The same tween procedure interface and implementation
holds for the contains-relationship: ifa is set, leading to a bidirectional dependency.

module containing procedures is rolled When the system executes an object-based
back, the procedures should be rolled . - ..
rollback, it uses the specified dependencies in
back, too, but not the other way round. . . .
order to determine which further objects have
0 bidirectional dependencies to be rolled back. In case of a module, it
The semantics of the relationship is synyill roll back all contained procedure inter-
metric, i.e., it holds in both directions.  faces and implementations, too. In case of a
procedure interface, it also rolls back the pro-

Example 38:  The relationship  cedure implementation and vice versa.
belongs-to requires procedure inter-

Example 3.7: If a procedure imple-
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The above solution allows the tool programnin order to derive this information, it is again
mer to define dependencies in a dynamic waossible to set a dependency whenever a cer-
For example, the current state of a certain otain relationship (like theuses-relationship)
ject may be evaluated. The tool programmekists between the corresponding objects.

may also integrate an interactive interface, e.g.,
in order to let the designer define the relevant

objects dynamically. .6 Treating Dependencies

For complex objects, the question arises hdWhenever a rollback of an object is caused by
to treat common subobjects of overlappirgpbme event, the system analyzes which other
complex objects (e.g., two programs contaobjects are dependent on this object. Both cri-
the same module, figure 9). Depending on tkeria, i.e., complex operations and object rela-
semantics of the complex object, both alternienships, are checked. This is done in a tran-
tives are meaningful: When one complex olsitive way, i.e., a cascading rollback of an ob-
ject is rolled back, the common subobiject (ject may cause further objects to be invalidated
it was modified by the transaction) is rolleédnd so on. Thus, the main algorithm for se-
back, too, or the common subobject is left idective recovery (which is implemented within
tacB. Since the system cannot determine thigie class library) looks as sketched in figure 10
the tool programmer has to specify how thi@ssuming the state of the objects was saved
situation should be handled (by setting apprbefore in a suitable way).

priate dependencies). In the appendix (section 6) we describe a com-

plete application scenario using the approach
Program P Program Q of selective recovery.

/ \/Nomains

Module M1| [Module M2| |Module M3| | Module M4| [Module M5 37 Implementatlon Aspects

common subobject of P and Q As described before, the specifications of com-
plex operation dependencies and object rela-
Figure 9: Example for Overlapping Complex Ob- tionship dependencies are done on the lan-
jects guage level by adding special code (e.g., be-

_ _ _ ~ginning a complex operation). This is useful
To consider the schema is relevant if objeci§, two reasons:

are not already related by complex operations
This is especially important for interactive en-
vironments like editors where a designer exe-
cutes a sequence of simple operations which
cannot be recognized automatically as belong-
ing together.

0 Typically, the underlying OODBMS only
provides generic methods to manipulate
objects or pages but does not maintain
user-defined methods. Thus, for dealing
with the latter, it is necessary to work on
the language level. Predefined methods

Example3.9: The designer modifies some (e.g., adding a relationship) are handled

procedure interfaces and some implementa- aUtOma'FIF:aII)./.
tions which use them. From these opera- 0 A specification on the language level

tions, the system has no information about permits the tool programmer to define
how the modifications belong together se- application-specific dependencies. An al-
mantically. ternative to this explicit way would be to

3Note that this problem is similar to the problems of extend the schema description language.

deleting or copying complex objects with shared subob- T_hi_s’ however_, WOUld_nOt p_ermit an in-
jects. dividual handling of single instances of
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Object::rollback (earlier-state)

{
if object already rolled back to earlier-state // avoid cycle
{

return;

}
roll back object to earlier-state;

for all dep_obj related by complex operation dependencies

{
dep_obj.rollback (earlier-state) ;

}

for all dep_obj related by object relationship dependencies
{

dep_obj.rollback (earlier-state) ;
}

Figure 10: Main Algorithm for Rolling Back an Object

a class. An extension of our approadasks andool transactions for realizing tools.

is to exploit certain information from theFor the purpose of implementing certain proto-
schema automatically, e.g., by assumels (e.g., two-phase locking) paotocol class
ing that acontains-relationship alwaysis used.

causes a dependency. The class library defines the basic recovery

The integration of selective recovery into th@nd concurrency control algorithms. For reco-
transaction management can be done in t¥@y, mechanisms for total, partial and selec-
ways: Either the modifications are (partly) intive rollback (e.g., theo11back method de-
tegrated into the transaction management $¥ibed above) and the commit handling are
the OODBMS. This requires availability of therovided. For concurrency control, protocols
source code of the database management di& two-phase or non-two-phase locking and
tem, but permits efficient and safe access ftgXible lock modes are offered.

internal information (e.g., the log). The othelh order to consider object-specific informa-
possibility is to work on top of the OODBMS tion, the protocols access the design object
i.e., on the language level. Then the managgiass which describes a default behaviour of
ment of long-duration transactions has to kesign objects. Every design object imple-
implemented based on the short transactiomgnted by the application must be derived
provided by the OODBMS. This implies disfrom this design object class. The default be-
advantages regarding efficiency and safety, h#viour may be changed by specialization.

?s easier to implement. .It is also more portab@y deriving subclasses of the protocol and
If a standard database interface isused.  yanqaction classes, transaction types with
For these reasons, the latter approach is takgiplication-specific concurrency control and
by our prototype implementation d»EST. recovery mechanisms can be realized. Trans-
PODEST provides (as a class library) classesgctions of different types can be combined to
for design objects andlong-duration transac- form a heterogeneous hierarchy. For exam-
tions (figure 11). The latter are further dividegle, within a hierarchy conventional protocols
into design transactions for modeling design (guaranteeing serializability) and more flexible
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Protocol uses

O is child of

~

I N

Long-Duration
Transaction

accesses

DesignObject

Rd ! N, -

application—specific

N
AN
design objects for the

subclasses

DesignTransaction

ToolTransaction

ON
0N,
application—specific
subclasses

AN

’ 1 ~
application—specific
subclasses

application

— — - inheritance

relationship
between classes

Figure 11: Class Hierarchy

protocols (permitting cooperative work) can beExample 4.1:  If a consistency constraint

combined, depending on the requirements ofr@quires that a graphical software specifi-
project or subproject. cation is always consistent with the textual

The approach exploits object-oriented Con§ource code, a rollback of the specification

. . may either lead to a rollback of the source
cepts for realizing a very flexible trans-. . . " possible — to an automatic re-
action system which is integrated into ayeneration.
object-oriented programming language (in
our case C++ [Str86]) and an ODMGconsistency constraints may also be bidirec-
compliant OODBMS (C-LAB's implementa+ional (j.e., the mutual consistency of several
tion OpenDM [RBB*95, Cad95]). The ap-gpjects is specified by a constraint) or unidi-
proach also uses concepts from the transacti@gtional (j.e., the consistency of one object
toolkit [US92]. depends on the state of another object but not

vice versa).

4 Extensions _ ,
4.2 Releasing Objects

4.1 Further Consistency Requi-

Some approaches (e.g., [KSUW85]) suggest to
rements

permit a long-duration transaction to release
We now discuss further aspects and extensig’ﬁ%gle objects (figure 12) such that other trans-
ctions can access them before the end of the

of selective recovery. First, it may be usefl{ ) o . .-
: . : . ransaction (which in fact is a prerequisite for
to specify arbitrary consistency constraints on operation)

objects. Examples are cardinality constraints
for the relationships between objects or rulg
for the construction of derived data. Consi
tency constraints have to be enforced when-
ever modifications are done, either by prevent-
ing illegal modifications or by making autor
matic corrections. This enforcement has to be
done in case of recovery, too. Thus, consis
tency constraints may either lead to cascading
rollback of other objects or to the execution of

automatic reactions to correct inconsistencies.

Fifansaction 1

transaction 2
5-
oee g
relea\sN\ /access
object object

Figure 12: Releasing Objects
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The release of objects can be handled in two@r complex objects, it must again be defined
ways: by the tool programmer whether common sub-

0 The transaction unlocks the object, b@bjects are released together with the contain-
keeps the right to roll back its modificaing object or not. In most cases, the first alter-
tions. This is the traditional way appliedhative is meaningful since the containing ob-
e.g., by the non-strict two-phase lockinifct in some wayises the subobject.
protocol [KMSL90]. When the transac-
tion aborts, qll modified objects — |nclud-4_3 Nested and Parallel Trans-
ing those which were released — have to be .
rolled back in order to guarantee atomic- actions

ity. This can cause cascading rollback @elective recovery can also be applied to

other transactions. _nested and parallel transactions. After rollback
O Itis often useful to release and commitimygs peen performed within a (sub-)transaction,
mediately parts of the work of a transagne effects on other transactions (parent, chil-
tion in order to make it available to othefren, siblings or arbitrary transactions) are
transactions without the risk of cascadingyamined. If objects are rolled back which
rollback.  Thus, the transaction decidg§ere accessed by other (sub-)transactions af-
that this work is already in a stable staf@gnyards, a cascading rollback occurs. How-
_and gives up its right to abort th_ese ORsver, in contrast to the traditional approach
jects. This effect may also be achieved Rynere complete transactions are rolled back,
splitting a transaction and committing ONge|ective recovery can be applied to the other
of the resulting transactions (cf. section 2yansactions, too. Thus, loss of work is mini-

wWhen Sing|e objects are released and Comj.zed even in case of a COOperation between

mitted (we call itselective commit), the same transactions. Consequently, selective recovery

problems occur as with selective rollback: oS suitable for cooperative environments.

jects which belong together because of some _

dependencies (e.g., due to complex operation'g;(ample‘l',& If a transaction has read an
interface which was implemented by another

must be treated as a unit. Thus, the release t?ansaction, arollback of the latter invalidates

one object may hav_e to b(_a acco_mpamed bY ﬂ%ﬁe interface. Thus, the transaction has to
release of other objects (if that is not poss'bl?ollback all the modifications which rely on

the release is prevented). Note that certain Ui jnterface. Selective rollback allows the
directional dependencies are handled just thginsaction to keep other changes which are
opposite way as in the case of rollback: if amot dependent on the interface.

object is released, objects it depends on are re-

leased, too. )
4.4 Operation-based Recovery

Example 4.2: If a transaction has read ) )
an interface and has adapted an implemen- Ve already mentioned that operation-based re-

tation to use some new features of the in- COVery is an alternative to object-based reco-
terface, the implementation must not be re-  Vvery. While we cannot discuss this aspect in
leased if the corresponding state of the inter- ~ detail in this paper, we can point out that simi-
face was not released before. On the other lar problems occur: if an operation of a trans-
hand, the interface can be released with- action is compensated by an inverse operation,
out the implementation which makes sense, there can be cascading effects on later opera-

e.g., if other transactions are meant to adapt  tjons of the same or other transactions (figure
further procedures to the new interface. 13).
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transaction 1 transaction 2 troduced in section 3, is a suitable alternative.
operations Some.approaches in IiFerature glready permit a
——— ———— selective rollback of single objects, but have
i — - : i
N fefecsonother 7 " the d_|sadvantage th_at they ignore th_e depen-
N operations__ -~ dencies between objects resp. operations.

ggg‘rgfigf]ate The concepts presented in this paper rely on
state-based rollback of single objects. We dis-

tinguish two kinds of dependencies, caused
Figure 13: Compensation of Operations by complex operations and by object relation-
ships. These dependencies are used to perform
In order to avoid such effects, most approacheascading rollbackvithin a transaction which
(e.g., [WS92, MRKN92]) only allow subseis necessary to achieve consistency after a se-
guent operations which are commutative willective rollback of single objects.

the compensated-for operation resp. the Cofye priefly presented our prototypeoBEST
pensating operation [KLS90] (a restriction thgghich implements our ideas on basis of
is quite impractical for the environments we,e ODMG-compliant OODBMSOpenDM
consider). [WR92] allow arbitrary operationfRBB+95, Cad95]. Furthermore we gave some
and apply cascading compensation if necegints how our ideas can be extended. In par-
sary. In any case, later operations of 8a&e ticylar, we discussed the problems of selective
transaction may be causally dependent on ainmit of objects, cooperation between trans-
of the compensated-for operations and havedgtions and operation-based recovery (com-
be rolled back, too. pensation). The last point is a very interesting
issue to be investigated further since compen-
sation in general seems too complex to be used
as a general technique. However, compensa-
tion might show advantages in special situa-
tions.

Example4.4. If a transaction reads proce-
dure a and modifies procedure B, these op-
erations are commutative, since they touch
different objects. However, the modification
of B may rely causally on the read opera-
tion and may thus have to be invalidated if Currently, we are performing some studies to

a’s modification is compensated. get a better understanding of the advantages

and disadvantages of our approach.
By using the concepts we have described, we

can optimize this case (cf. [MUZ96]). Com-
pensation can then be done in a selective way,
i.e., the affected operation is compensated and
the effects on later operations are analyzed
by checking for the dependencies described in
section 3.

5 Conclusion and Future
Work

In this paper we have discussed the problem
of recovery for long-duration transactions. If a
total or partial rollback of a transaction is not
desirable, the concept of selective recovery, in-
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6 Appendix: Application create-module A

create-proc Al

Scenano create-proc A2
use-proc-if Al.impl A2.if
We sketch a scenario based on the schema create-module B

. . create-proc Bl
from figure 3. A programmer implements create-proc B2

an editor for modules and procedures. The use-proc-if Bl.impl A2.if
editor uses the classolTransaction from | -
the class library. The classes febdule, SAVE STATES OF OBJECTS

procIf and procImpl are derived from the it N
classpesignobject. At the user interface, the mocLty-broc

. . . modify-proc A2
editor provides — among others — the following modify-proc Bl
commands (e.g., within a menu): modify-proc B2

create-module

remove-module Figure 14: Editor Session
create-proc

remove-proc
modify-proc gle long-duration transaction.
use-proc-if

replace-all At this point of the transaction, the designer

finds an error and decides to roll back a certain
The commands (each defined as a co@pject to the saved state. The recovery algo-
plex operation) handle the three kinds dfthm (figure 10) exploits the information pro-
objects and the relationships defined in tivéded by the dependencies and rolls back other
schema, e.g., the relationshiprongs - to and Objects, too. Some typical cases show the ef-
the contains relationships. The commandects of rolling back a certain object. Behind
use-proc-if establishes ases relationship the arrow, we list the objects which are rolled
between a procedure interface and anoth@ck by the algorithm and the reasons for the
procedure implementation. The commarfEcisions:

replace-all replaces a certain text by a new roll back a1.if —

one in the module and all its procedures. roll back ai1.imp1 because of
The editor commands call methods on the belongs-to. S
three design object classesdule, ProcIf (uses is not relevant in this direction, i.e.,

and procImpl Which are omitted here. The  22.if is maintained.)

programmer also sets dependencies (figure 8) roll back a2.imp1 —

between the objects of the three classes: a roll backaz.if because ofelongs-to.
unidirectional dependency betweema@iule roll backa1.imp1 because ofises.

and all its procedure interfaces and implemen- roll backa1.if because obelongs-to.
tations, a bidirectional dependency between roll backs1.imp1 because ofises.

a procIf and itsproctmpl, and a unidirec- roll backs1.if because obelongs-to.
tional dependency betweemwaoctmp1 and all O roll back 2 —
ProcIf used by therrocTmpl. roll back a1.if, Al.impl, A2.if,

A2.impl because ofontains.
roll backr1.imp1l because ofises.
roll backs1.if because obelongs- to.

Now a designer is working with the editor in
an interactive way (figure 14). He calls edi-
tor commands on modulesands with pro-
ceduresal, a2, 1 and B2 (we add a suf- O roll back s —

fix imp1 or i for implementation resp. inter- ~ foll back B1.if, Bl.impl, B2.if,
face.). The commands are called within a sin- B2.impl because ofontains.
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