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Abstract
Long-duration transactions play an important role
in non-standard database applications like design
environments or office automation. This paper
deals with recovery for long-duration transactions.
We start with a discussion of approaches presented
in literature and show why these solutions are not
sufficient. We then introduceselective recovery.
The main advantage of this approach is that only
that part of work is considered that is directly af-
fected by a failure (first step). In order to guarantee
consistency, however, it must be checked if further
work is indirectly affected and therefore must be
invalidated, too (second step). This is decided by
evaluating information about operations performed
on the data and information about the relationships
between objects. The approach is especially tai-
lored to object-oriented database systems.
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1 Overview

Long-duration transactions play an important
role in non-standard database applications like�Cooperative Computing & Communication Labo-
ratory (Siemens Nixdorf Informationssysteme AG, Uni-
versität-GH Paderborn)

design environments or office automation. The
inability of traditional transaction management
[BHG87] to support long-duration transactions
has already been observed by [Gra81] and was
the motivation for the development of a num-
ber of non-standard transaction models (for an
overview, see, e.g., [BK91] or [Elm92]).

This paper focuses onrecovery for long-
duration interactive transactions. The goal is
to guarantee that as little work as possible is
lost if a failure occurs without sacrificing con-
sistency. However, this means to skip the sim-
ple and elegant concept of atomicity which is
the base of the traditional transaction model.

The idea we present will be calledselective re-
covery. With this approach, first that part of
work is considered that isdirectly affected by
the failure. Other work, even if performed after
the erroneous work, will be preserved if possi-
ble. In order to assure consistency, however, it
must then be checked whether this work isin-
directly affected by the failure and, therefore,
must be invalidated, too. This is decided by
evaluating information about operations per-
formed on the data and information about the
relationships between objects.

Selective recovery is a new recovery tech-
nique for long-duration and interactive trans-
actions. It also allows to supportco-
operation between transactions more effec-
tively since it minimizes the negative ef-
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fects of cascading rollback. The applica-
tion area we assume are design applica-
tions [MZU94] which rely on object-oriented
database management systems (OODBMS).
The concept has been implemented in a proto-
type called PODEST (“ProgrammableObject-
orientedDesign Transaction System”).

First, we discuss how other approaches deal
with the problem of recovery and why the pre-
sented solutions are not sufficient. We then
introduce our approach of selective recovery
(section 3). In particular, we discuss several
kinds of dependencies which have to be exa-
mined in order to achieve consistency. In sec-
tion 4 we show how the model can be extended
in various directions.

2 Related Work

Conventional recovery [HR83, BHG87] han-
dles different kinds of failures, e.g., process
crashes or disk failures. The techniques devel-
oped there (e.g., logging) can also be applied
to long-duration transactions. However, logi-
cal transaction failures like exceptions within
an application, erroneous user inputs or inten-
tional rollbacks require more sophisticated ap-
proaches which are the topic of this paper.

A fairly traditional way which can also support
long-duration transaction recovery is the so-
calledpartial rollback [HR87]. Here, a save-
point is set to which a transaction can be rolled
back in case of a failure. The problem with this
approach is that the rollback invalidatesall the
work performed after the savepoint (figure 1).
It is not possible to restrict the rollback to that
part of work that isreally affected by the fail-
ure and to preserve the other work.

From the papers on long-duration transactions
only few discuss recovery issues in more de-
tail. Instead, most of the work focuses on con-
currency control.

Some approaches propose toroll back sin-
gle objects only (e.g., [KLMP84, RRR+88]).
This has the advantage that only the work

savepoint

modifications

partial rollback

modify A modify B modify C

Figure 1: Partial Rollback

on the respective object is lost but no other
work. However, objects are not simple entities
that are independent of each other. First, ob-
jects are connected to other objects by relation-
ships, especially in data models like the entity-
relationship [Che76] or the object-oriented
model [ABD+89]. Objects can also be related
due to complex operations which read or write
more than one object (figure 2). For these rea-
sons, a rollback of single objects can lead to
severe inconsistencies which, in these transac-
tion models, have to be recognized and treated
by the user. A dual problem is theprema-
ture release of single objects which was pro-
posed to support cooperation between transac-
tions [KSUW85]: because of the above rea-
sons a transaction accessing a released object
may get an inconsistent view of the database.
When a transaction aborts which had already
released some objects, either cascading roll-
back has to be performed, or the transaction
can only roll back part of its work leaving all
released objects valid which again may lead to
an inconsistency.

objects

rollback
both objects

A

B

C

A’

B’

modify A and B

Figure 2: Rollback of Objects

The concept ofsplit transactions [PKH88] di-
vides the objects a transaction has accessed
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into subsets and assigns them to independent
transactions which can individually commit or
abort. Thus, it is possible to roll back a part of
the original transaction and commit the other
part. The subsets have to be disjoint, i.e.,
it must again be taken into account that ob-
jects can be related in some way or that opera-
tions spanning more than one object were per-
formed. The model does not explicitly provide
mechanisms for checking these conditions.

The approach of [NRZ92] works by describ-
ing the consistency requirements for transac-
tions throughgrammar rules. Single opera-
tions can be rolled back which is done recur-
sively until, finally, the grammar rules are ful-
filled again. Thus, consistency is guaranteed
not only for normal work but also after reco-
very. While this is a very elegant approach
it has the disadvantage that it requires a lot
of specification effort. In order to guarantee
consistency, the workflow and the constraints
on data must be specified precisely. This spe-
cification, however, is very difficult for open-
ended interactive transactions.

Some approaches (e.g., [KLS90, WS92]) pro-
posecompensation in order to undo certain
operations while keeping the results of other
operations. This works well as long as it
can be guaranteed that future operations ob-
serve certain commutativity constraints, which
is a very strong restriction. If this restriction
cannot be guaranteed, as, e.g., in theCon-
Tracts model [WR92], cascading compensa-
tion may occur. Here, a step (sayS) within
a long-duration transaction (ConTract) is an-
notated with a precondition. When the precon-
dition gets invalidated because of some other
event in a concurrent ConTract stepS must
be rolled back. However, if the ConTract has
already performed further steps afterS, the
whole ConTract must be rolled back to that
point, since there may be causal dependen-
cies between steps (i.e., there is a control flow
within the ConTract). Causality must be as-
sumed because there is no further information
about how steps are based on each other. Thus,

recovery may lead to the loss of whole Con-
Tracts or at least of large parts. Addition-
ally, the specification of preconditions requires
ConTracts to be pre-planned which is often not
desirable for applications as the ones consid-
ered in this paper.

In the following we will show how our ap-
proach to recovery for long-duration transac-
tions differs from the above solutions.

3 Selective Recovery

3.1 Main Idea of Selective Re-
covery

Recovery for long-duration transactions obvi-
ously requires to give up atomicity, i.e., to deal
with a finer granularity than a transaction. In
order to guarantee consistency this requires to
evaluate additional information about how the
objects resp. the operations of a transaction are
related, an aspect not considered by most other
transaction models. The additional informa-
tion may be derived from existing information
sources or may have to be specified explicitly.

Our approach offers two mechanisms. First, it
permits to perform recovery in a selective way,
i.e., to roll back only parts of a transaction,
and still guarantees that the consistency con-
straints are obeyed (by evaluating additional
information). Second, it permits to specify
application-specific information in order to in-
fluence the recovery process. These two mech-
anisms are meant to be used by programmers
who write tools (like editors) for design envi-
ronments. Those programmers may then offer
the end user, i.e., the designer, flexible ways to
recover from errors. Technically, in our pro-
totype PODEST we have developed a class li-
brary for an object-oriented programming lan-
guage. Thus, the tool programmer can make
use of design transaction management func-
tionality in the same language used to imple-
ment the tool.
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3.2 Basic Assumptions

We start with a simple model which will be ex-
tended later: a flat design transaction performs
methods on objects of an OODBMS. The re-
covery technique we consider is the rollback
of modifications1. The design transaction does
not exchange data with other transactions (co-
operation is deferred to section 4.3).

As an example we use a simplified sce-
nario from the area of software design. We
assume that the design objects manipulated
within the software design environment are
programs, modules, procedure interfaces and
procedure implementations (figure 3). These
objects are connected by relationships: a pro-
gram contains several modules, a module
contains procedure interfaces and procedure
implementations, a procedure implementation
belongs-to a certain procedure interface and
mayuse other procedure interfaces. Thus, we
have to consider complex objects (contains-
relationships) and objects linked by arbitrary
relationships.

Program

Module

contains

contains−if contains−impl

belongs−to

uses

ProcIf ProcImpl

Figure 3: Example Scenario

The specific architecture of the OODBMS is
not relevant for our discussion. However, the
OODBMS is assumed to provide an interface
integrated with an object-oriented program-
ming language. In this paper, we use the C++-
embedding as defined by the ODMG-Standard
[Cat94]. Thus, the schema is defined by C++

1Other possibilities are, e.g., the execution of alter-
natives or manual/automatic repair of inconsistencies.

classes (with some extensions), and methods
are written as normal C++ code.

3.3 Introduction to Selective
Recovery

Now we discuss the concept ofselective re-
covery. Most transaction models assume that
an operation is alwayscausally dependent on
all earlier operations of the same transaction.
For this reason, a rollback has to be performed
completely or partially “from the end”. Espe-
cially in interactive environments, the assump-
tion of causality is too strong. A designer may
execute a set of operations which are not ne-
cessarily dependent on each other.

Example 3.1: A designer changes two in-
dependent procedure interfaces A and B (fig-
ure 4). Then he adapts procedure imple-
mentation C to the changes of A. A rollback
of procedure interface A invalidates proce-
dure implementation C, but not procedure in-
terface B. A rollback of procedure interface
B does not invalidate procedure implementa-
tion C.

selective rollback

modifications

modify 
ProcIf A

modify 
ProcIf B

modify 
ProcImpl C

cascade because ProcImpl C 
uses changes of ProcIf A

recovery

Figure 4: Causality of Modifications

The goal of selective recovery is to roll back
only those parts of a transaction that arereally
affected by the failure, i.e., a transaction as a
whole is no longer the unit of recovery. This
leads to two questions:

❑ What are suitablerecovery units instead?
❑ What consistency guarantees can be gi-

ven under such circumstances?
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Two recovery units are conceivable:

❑ object-based recovery
The state of an object is rolled back to an
earlier point in time. All work on the ob-
ject performed after this point in time is
lost. For this reason we also call this ap-
proachpartially-selective recovery.

❑ operation-based recovery
An operation is rolled back by execut-
ing an inverse (compensating) operation.
Changes performed later on the affected
objects are only lost if they (recursively)
depend on the compensated operation.
Thus, this approach can be described as
fully-selective recovery.

These two perspectives seem to be relatively
independent. However, as will be seen in
the following, they have common characteris-
tics. For example, object-based recovery has
to consider the operations performed on the
object. We will discuss object-based recovery
in this section and shortly mention operation-
based recovery in section 4.4.

In contrast to the classical transaction model
where the transaction is the unit of recovery
and consistency, the two recovery units men-
tioned above (objects and operations) cannot
generally serve asconsistency units because

❑ objects may be related to other objects,
❑ there may be dependencies between ope-

rations performed within a transaction.

Thus, it is necessary to perform a kind of cas-
cading rollbackwithin a transaction in order to
reach a consistent state. Therefore, we con-
sider the following two consistency require-
ments:

❑ operation consistency
Whenever operations are executed which
affect more than one object it should not
be possible to roll back in such a way that
parts of the operations survive while oth-
ers are rolled back.

Example 3.2: When the designer ex-
ecutes a global substitute for all proce-

dures of a module in order to change a
variable name, a rollback of a single pro-
cedure would lead to a semantic incon-
sistency.

❑ schema consistency
It should not be possible to roll back ob-
jects selectively in such a way that the
schema consistency is violated.

Example 3.3: If a new proce-
dure was inserted into a module, and
the belongs-to relationship between
procedure interface and implementation
was established, a rollback of the in-
terface only would violate referential in-
tegrity because the implementation still
references the interface.

Conventional transaction management guaran-
tees2 these kinds of consistency by rolling back
transactions completely or partially (through
the assumption of causality). Other transaction
models (section 2) offer more flexibility but ig-
nore the above consistency requirements. Our
approach permits a selective rollback of parts
of a transaction and exploits further informa-
tion in order to determine if more parts of the
transaction are affected by the failure. In other
words, the system decides if the assumption of
causality is really valid. This is the fundamen-
tal difference to other transaction models (sec-
tion 2).

Information about causality is partly present in
the system anyway (e.g., information about re-
lationships between objects). Additional infor-
mation may be provided by the tool program-
mer explicitly. If the information is not pre-
cise enough, heuristic decisions are made. In
such a case the designer has to correct poten-
tial inconsistencies manually which is mostly
acceptable in interactive environments. How-
ever, the system uses as much information as
possible in order to determine the causality au-
tomatically.

2if transactions are programmed correctly
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A

B

C

B’’

C’

A’

B’

A’’

time

op1(A, B)

op2(A’)

op3(B’, C)

point 1 point 2

Figure 5: Example for Complex Operations

The information relevant for selective recovery
is represented bydependencies. Dependen-
cies are either uni- or bidirectional. In the first
case, an object is dependent on another one but
not vice versa. An object is invalidated if the
object it depends on is invalidated. In the sec-
ond case, invalidation takes place in either di-
rection.

We now show in more detail how to determine
dependencies and perform cascading rollback
within a long-duration transaction.

3.4 Dependencies caused by
Complex Operations

A long-duration transaction performs a se-
quence of operations. In an object-oriented en-
vironment, an operation is a method on an ob-
ject which may call methods on the same or
other objects. Whenever an operation touches
more than one object, we call it acomplex op-
eration (e.g.,op1 andop3 in figure 5). Such
operations should be executed atomically, i.e.,
either completely or not at all. Thus, the execu-
tion of such an operation links together the par-
ticipating objects in such a way that they have
to be treated as a unit by the recovery manage-
ment. This not only holds when the operation
is executed (which is the conventional atomic-
ity property), but alsoafter it has terminated
successfully.

Example 3.4: In figure 5, three modifi-
cation operations (each of which forms an
atomic unit) are performed. If A" is rolled

back to point 1 (state A), B" must be rolled
back, too (state B), which finally leads to a
rollback of C’ (state C). If A" is rolled back to
point 2 (state A’), neither B’ nor B" nor C’
are concerned. If B" is rolled back to point
2 (state B’), C’ must be rolled back, too, but
A" can be kept.

When writing the methods, the tool program-
mer has to specify which operations form an
atomic unit. Therefore, we introduce language
elements to begin and to end a complex opera-
tion. Examples are listed in figure 6.

Complex operations may cause uni- or bidirec-
tional dependencies between two or more ob-
jects.

❑ unidirectional dependencies
An operation reads an object (which was
modified by an earlier operation) and
writes another object. If the first object
is rolled back, the second object must be
rolled back, too. However, if the second
object is rolled back, the first object does
not have to be considered, even if it was
modified later on.

Example 3.5: A procedure interface
to which a new parameter was added by
an earlier operation is read, and a pro-
cedure implementation using this inter-
face is adapted by adding a new actual
parameter. When the interface is rolled
back, the implementation becomes in-
valid. A rollback of the implementation,
however, is not relevant for the interface.
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begin_complex_op();

proc_if.read_parms(...);

proc_impl.add_new_parm_to_proc_call(...);

end_complex_op();

------------------------------------------------

begin_complex_op();

for all proc_impl contained in module

// scan all procedure implementations

{

proc_impl.substitute(name1, name2);

}

end_complex_op();

Figure 6: Unidirectional and Bidirectional Dependencies

❑ bidirectional dependencies
An operation modifies several objects. A
rollback of one of these objects must lead
to a rollback of the other objects and vice
versa.

Example 3.6: A global substitute
of a variable name by another name is
performed on all procedure implemen-
tations of a module. A rollback of a
single procedure implementation invali-
dates the other ones.

The system records the dependencies between
the considered objects. Since it knows whether
objects are read or written it can decide if the
dependencies are uni- or bidirectional. In case
of the rollback of an object to a point before
the execution of a certain complex operation
the system performs cascading rollback of all
objects which are dependent on the object be-
cause of this complex operation. The addi-
tional logging and the determination of depen-
dent objects in case of selective rollback are
the main differences to conventional recovery.

Complex operations may also modify relation-
ships between objects. Since a partial modi-
fication of a relationship may lead to schema
violations, these operations, by default, have

to be treated in an atomic way. However, there
may be further dependencies caused by rela-
tionships which will be discussed next.

3.5 Dependencies caused by
Object Relationships

The schema permits to define different kinds
of relationships between objects. The most
important one is thecontains-relationship
which leads to the construction of complex ob-
jects (figure 7).

Module M

ProcIf A ProcImpl A ProcIf B ProcImpl B

complex object

belongs−to

uses

contains−if/impl

belongs−to

Figure 7: Example for a Complex Object

If an object is rolled back that contains other
objects, it makes sense to roll back the inner
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Module::add_procedure(procIf, procImpl)

{

contains-if += procIf; // set the relationship

set_dependency(REL-UNIDIRECTIONAL,

this, procIf); // set the dependency

contains-impl += procImpl; // set the relationship

set_dependency(REL-UNIDIRECTIONAL,

this, procImpl); // set the dependency

procImpl.set_belongs_to(procIf);

}

ProcImpl::set_belongs_to(procIf)

{

belongs-to = procIf; // set the relationship

set_dependency(REL-BIDIRECTIONAL,

this, procIf); // set the dependency

}

Figure 8: Example for Specifying Dependencies

objects, too. This behaviour may also be desir-
able for arbitrary relationships which combine
objects to logical units. Thus, it must be spec-
ified which relationships lead to a treatment of
objects as a unit.

Relationships can be the source of unidirec-
tional and bidirectional dependencies:

❑ unidirectional dependencies
The semantics of the relationship is asym-
metric, i.e., it holds in one direction but
not in the other one.

Example 3.7: If a procedure imple-
mentation uses a certain procedure in-
terface, a rollback of the interface may
invalidate the modifications of the imple-
mentation. On the other hand, a roll-
back of the implementation does not in-
fluence the interface because the uses-
relationship is asymmetric. The same
holds for the contains-relationship: if a
module containing procedures is rolled
back, the procedures should be rolled
back, too, but not the other way round.

❑ bidirectional dependencies
The semantics of the relationship is sym-
metric, i.e., it holds in both directions.

Example 3.8: The relationship
belongs-to requires procedure inter-

face and implementation to be consis-
tent, e.g., with respect to the number of
formal parameters. Thus, if a transac-
tion modifies both objects, the relation-
ship may be taken as a hint to always
roll back both objects.

The specification of dependencies is done on
the language level, again. The tool program-
mer has to set the desired dependencies when-
ever relationships are inserted or deleted. This
is done by inserting special calls into the code
(or more conveniently by overloading the op-
erators dealing with relationships). For exam-
ple, in figure 8 the relationshipcontains-if
and contains-impl between a module and
a new procedure interface/implementation are
set, leading to unidirectional dependencies.
Afterwards, the relationshipbelongs-to be-
tween procedure interface and implementation
is set, leading to a bidirectional dependency.

When the system executes an object-based
rollback, it uses the specified dependencies in
order to determine which further objects have
to be rolled back. In case of a module, it
will roll back all contained procedure inter-
faces and implementations, too. In case of a
procedure interface, it also rolls back the pro-
cedure implementation and vice versa.
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The above solution allows the tool program-
mer to define dependencies in a dynamic way.
For example, the current state of a certain ob-
ject may be evaluated. The tool programmer
may also integrate an interactive interface, e.g.,
in order to let the designer define the relevant
objects dynamically.

For complex objects, the question arises how
to treat common subobjects of overlapping
complex objects (e.g., two programs contain
the same module, figure 9). Depending on the
semantics of the complex object, both alterna-
tives are meaningful: When one complex ob-
ject is rolled back, the common subobject (if
it was modified by the transaction) is rolled
back, too, or the common subobject is left in-
tact3. Since the system cannot determine this,
the tool programmer has to specify how this
situation should be handled (by setting appro-
priate dependencies).

Program P

contains

Program Q

common subobject of P and Q

Module M1 Module M2 Module M3 Module M4 Module M5

Figure 9: Example for Overlapping Complex Ob-
jects

To consider the schema is relevant if objects
are not already related by complex operations.
This is especially important for interactive en-
vironments like editors where a designer exe-
cutes a sequence of simple operations which
cannot be recognized automatically as belong-
ing together.

Example 3.9: The designer modifies some
procedure interfaces and some implementa-
tions which use them. From these opera-
tions, the system has no information about
how the modifications belong together se-
mantically.

3Note that this problem is similar to the problems of
deleting or copying complex objects with shared subob-
jects.

In order to derive this information, it is again
possible to set a dependency whenever a cer-
tain relationship (like theuses-relationship)
exists between the corresponding objects.

3.6 Treating Dependencies

Whenever a rollback of an object is caused by
some event, the system analyzes which other
objects are dependent on this object. Both cri-
teria, i.e., complex operations and object rela-
tionships, are checked. This is done in a tran-
sitive way, i.e., a cascading rollback of an ob-
ject may cause further objects to be invalidated
and so on. Thus, the main algorithm for se-
lective recovery (which is implemented within
the class library) looks as sketched in figure 10
(assuming the state of the objects was saved
before in a suitable way).

In the appendix (section 6) we describe a com-
plete application scenario using the approach
of selective recovery.

3.7 Implementation Aspects

As described before, the specifications of com-
plex operation dependencies and object rela-
tionship dependencies are done on the lan-
guage level by adding special code (e.g., be-
ginning a complex operation). This is useful
for two reasons:

❑ Typically, the underlying OODBMS only
provides generic methods to manipulate
objects or pages but does not maintain
user-defined methods. Thus, for dealing
with the latter, it is necessary to work on
the language level. Predefined methods
(e.g., adding a relationship) are handled
automatically.

❑ A specification on the language level
permits the tool programmer to define
application-specific dependencies. An al-
ternative to this explicit way would be to
extend the schema description language.
This, however, would not permit an in-
dividual handling of single instances of
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Object::rollback(earlier-state)

{

if object already rolled back to earlier-state // avoid cycle

{

return;

}

roll back object to earlier-state;

for all dep_obj related by complex operation dependencies

{

dep_obj.rollback(earlier-state);

}

for all dep_obj related by object relationship dependencies

{

dep_obj.rollback(earlier-state);

}

}

Figure 10: Main Algorithm for Rolling Back an Object

a class. An extension of our approach
is to exploit certain information from the
schema automatically, e.g., by assum-
ing that acontains-relationship always
causes a dependency.

The integration of selective recovery into the
transaction management can be done in two
ways: Either the modifications are (partly) in-
tegrated into the transaction management of
the OODBMS. This requires availability of the
source code of the database management sys-
tem, but permits efficient and safe access to
internal information (e.g., the log). The other
possibility is to work on top of the OODBMS,
i.e., on the language level. Then the manage-
ment of long-duration transactions has to be
implemented based on the short transactions
provided by the OODBMS. This implies dis-
advantages regarding efficiency and safety, but
is easier to implement. It is also more portable
if a standard database interface is used.

For these reasons, the latter approach is taken
by our prototype implementation PODEST.
PODEST provides (as a class library) classes
for design objects and long-duration transac-
tions (figure 11). The latter are further divided
into design transactions for modeling design

tasks andtool transactions for realizing tools.
For the purpose of implementing certain proto-
cols (e.g., two-phase locking), aprotocol class
is used.

The class library defines the basic recovery
and concurrency control algorithms. For reco-
very, mechanisms for total, partial and selec-
tive rollback (e.g., therollback method de-
scribed above) and the commit handling are
provided. For concurrency control, protocols
like two-phase or non-two-phase locking and
flexible lock modes are offered.

In order to consider object-specific informa-
tion, the protocols access the design object
class which describes a default behaviour of
design objects. Every design object imple-
mented by the application must be derived
from this design object class. The default be-
haviour may be changed by specialization.

By deriving subclasses of the protocol and
transaction classes, transaction types with
application-specific concurrency control and
recovery mechanisms can be realized. Trans-
actions of different types can be combined to
form a heterogeneous hierarchy. For exam-
ple, within a hierarchy conventional protocols
(guaranteeing serializability) and more flexible



www.manaraa.com

DesignTransaction ToolTransaction

DesignObjectProtocol uses accesses

inheritance

relationship
between classes

Long−Duration
Transaction

application−specific
subclasses

application−specific
subclasses

application−specific
subclasses

is child of

design objects for the
application

Figure 11: Class Hierarchy

protocols (permitting cooperative work) can be
combined, depending on the requirements of a
project or subproject.

The approach exploits object-oriented con-
cepts for realizing a very flexible trans-
action system which is integrated into an
object-oriented programming language (in
our case C++ [Str86]) and an ODMG-
compliant OODBMS (C–LAB’s implementa-
tion OpenDM [RBB+95, Cad95]). The ap-
proach also uses concepts from the transaction
toolkit [US92].

4 Extensions

4.1 Further Consistency Requi-
rements

We now discuss further aspects and extensions
of selective recovery. First, it may be useful
to specify arbitrary consistency constraints on
objects. Examples are cardinality constraints
for the relationships between objects or rules
for the construction of derived data. Consis-
tency constraints have to be enforced when-
ever modifications are done, either by prevent-
ing illegal modifications or by making auto-
matic corrections. This enforcement has to be
done in case of recovery, too. Thus, consis-
tency constraints may either lead to cascading
rollback of other objects or to the execution of
automatic reactions to correct inconsistencies.

Example 4.1: If a consistency constraint
requires that a graphical software specifi-
cation is always consistent with the textual
source code, a rollback of the specification
may either lead to a rollback of the source
code or – if possible – to an automatic re-
generation.

Consistency constraints may also be bidirec-
tional (i.e., the mutual consistency of several
objects is specified by a constraint) or unidi-
rectional (i.e., the consistency of one object
depends on the state of another object but not
vice versa).

4.2 Releasing Objects

Some approaches (e.g., [KSUW85]) suggest to
permit a long-duration transaction to release
single objects (figure 12) such that other trans-
actions can access them before the end of the
transaction (which in fact is a prerequisite for
cooperation).

transaction 1 transaction 2

release
object

access
object

Figure 12: Releasing Objects
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The release of objects can be handled in two
ways:

❑ The transaction unlocks the object, but
keeps the right to roll back its modifica-
tions. This is the traditional way applied,
e.g., by the non-strict two-phase locking
protocol [KMSL90]. When the transac-
tion aborts, all modified objects – includ-
ing those which were released – have to be
rolled back in order to guarantee atomic-
ity. This can cause cascading rollback of
other transactions.

❑ It is often useful to release and commit im-
mediately parts of the work of a transac-
tion in order to make it available to other
transactions without the risk of cascading
rollback. Thus, the transaction decides
that this work is already in a stable state
and gives up its right to abort these ob-
jects. This effect may also be achieved by
splitting a transaction and committing one
of the resulting transactions (cf. section 2).

When single objects are released and com-
mitted (we call itselective commit), the same
problems occur as with selective rollback: ob-
jects which belong together because of some
dependencies (e.g., due to complex operations)
must be treated as a unit. Thus, the release of
one object may have to be accompanied by the
release of other objects (if that is not possible
the release is prevented). Note that certain uni-
directional dependencies are handled just the
opposite way as in the case of rollback: if an
object is released, objects it depends on are re-
leased, too.

Example 4.2: If a transaction has read
an interface and has adapted an implemen-
tation to use some new features of the in-
terface, the implementation must not be re-
leased if the corresponding state of the inter-
face was not released before. On the other
hand, the interface can be released with-
out the implementation which makes sense,
e.g., if other transactions are meant to adapt
further procedures to the new interface.

For complex objects, it must again be defined
by the tool programmer whether common sub-
objects are released together with the contain-
ing object or not. In most cases, the first alter-
native is meaningful since the containing ob-
ject in some wayuses the subobject.

4.3 Nested and Parallel Trans-
actions

Selective recovery can also be applied to
nested and parallel transactions. After rollback
has been performed within a (sub-)transaction,
the effects on other transactions (parent, chil-
dren, siblings or arbitrary transactions) are
examined. If objects are rolled back which
were accessed by other (sub-)transactions af-
terwards, a cascading rollback occurs. How-
ever, in contrast to the traditional approach
where complete transactions are rolled back,
selective recovery can be applied to the other
transactions, too. Thus, loss of work is mini-
mized even in case of a cooperation between
transactions. Consequently, selective recovery
is suitable for cooperative environments.

Example 4.3: If a transaction has read an
interface which was implemented by another
transaction, a rollback of the latter invalidates
the interface. Thus, the transaction has to
rollback all the modifications which rely on
this interface. Selective rollback allows the
transaction to keep other changes which are
not dependent on the interface.

4.4 Operation-based Recovery

We already mentioned that operation-based re-
covery is an alternative to object-based reco-
very. While we cannot discuss this aspect in
detail in this paper, we can point out that simi-
lar problems occur: if an operation of a trans-
action is compensated by an inverse operation,
there can be cascading effects on later opera-
tions of the same or other transactions (figure
13).
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transaction 1 transaction 2

operations

effects on other
operations

compensate
operation

Figure 13: Compensation of Operations

In order to avoid such effects, most approaches
(e.g., [WS92, MRKN92]) only allow subse-
quent operations which are commutative with
the compensated-for operation resp. the com-
pensating operation [KLS90] (a restriction that
is quite impractical for the environments we
consider). [WR92] allow arbitrary operations
and apply cascading compensation if neces-
sary. In any case, later operations of thesame
transaction may be causally dependent on one
of the compensated-for operations and have to
be rolled back, too.

Example 4.4: If a transaction reads proce-
dure A and modifies procedure B, these op-
erations are commutative, since they touch
different objects. However, the modification
of B may rely causally on the read opera-
tion and may thus have to be invalidated if
A’s modification is compensated.

By using the concepts we have described, we
can optimize this case (cf. [MUZ96]). Com-
pensation can then be done in a selective way,
i.e., the affected operation is compensated and
the effects on later operations are analyzed
by checking for the dependencies described in
section 3.

5 Conclusion and Future
Work

In this paper we have discussed the problem
of recovery for long-duration transactions. If a
total or partial rollback of a transaction is not
desirable, the concept of selective recovery, in-

troduced in section 3, is a suitable alternative.
Some approaches in literature already permit a
selective rollback of single objects, but have
the disadvantage that they ignore the depen-
dencies between objects resp. operations.

The concepts presented in this paper rely on
state-based rollback of single objects. We dis-
tinguish two kinds of dependencies, caused
by complex operations and by object relation-
ships. These dependencies are used to perform
cascading rollbackwithin a transaction which
is necessary to achieve consistency after a se-
lective rollback of single objects.

We briefly presented our prototype PODEST

which implements our ideas on basis of
the ODMG-compliant OODBMSOpenDM
[RBB+95, Cad95]. Furthermore we gave some
hints how our ideas can be extended. In par-
ticular, we discussed the problems of selective
commit of objects, cooperation between trans-
actions and operation-based recovery (com-
pensation). The last point is a very interesting
issue to be investigated further since compen-
sation in general seems too complex to be used
as a general technique. However, compensa-
tion might show advantages in special situa-
tions.

Currently, we are performing some studies to
get a better understanding of the advantages
and disadvantages of our approach.
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6 Appendix: Application
Scenario

We sketch a scenario based on the schema
from figure 3. A programmer implements
an editor for modules and procedures. The
editor uses the classToolTransaction from
the class library. The classes forModule,
ProcIf and ProcImpl are derived from the
classDesignObject. At the user interface, the
editor provides – among others – the following
commands (e.g., within a menu):

create-module

remove-module

create-proc

remove-proc

modify-proc

use-proc-if

replace-all

The commands (each defined as a com-
plex operation) handle the three kinds of
objects and the relationships defined in the
schema, e.g., the relationshipbelongs-to and
the contains relationships. The command
use-proc-if establishes auses relationship
between a procedure interface and another
procedure implementation. The command
replace-all replaces a certain text by a new
one in the module and all its procedures.

The editor commands call methods on the
three design object classesModule, ProcIf

and ProcImpl which are omitted here. The
programmer also sets dependencies (figure 8)
between the objects of the three classes: a
unidirectional dependency between aModule
and all its procedure interfaces and implemen-
tations, a bidirectional dependency between
a ProcIf and itsProcImpl, and a unidirec-
tional dependency between aProcImpl and all
ProcIf used by theProcImpl.

Now a designer is working with the editor in
an interactive way (figure 14). He calls edi-
tor commands on modulesA andB with pro-
ceduresA1, A2, B1 and B2 (we add a suf-
fix impl or if for implementation resp. inter-
face.). The commands are called within a sin-

create-module A

create-proc A1

create-proc A2

use-proc-if A1.impl A2.if

create-module B

create-proc B1

create-proc B2

use-proc-if B1.impl A2.if

----------------------

SAVE STATES OF OBJECTS

----------------------

modify-proc A1

modify-proc A2

modify-proc B1

modify-proc B2

Figure 14: Editor Session

gle long-duration transaction.

At this point of the transaction, the designer
finds an error and decides to roll back a certain
object to the saved state. The recovery algo-
rithm (figure 10) exploits the information pro-
vided by the dependencies and rolls back other
objects, too. Some typical cases show the ef-
fects of rolling back a certain object. Behind
the arrow, we list the objects which are rolled
back by the algorithm and the reasons for the
decisions:

❑ roll back A1.if!
roll back A1.impl because of
belongs-to.
(uses is not relevant in this direction, i.e.,
A2.if is maintained.)

❑ roll back A2.impl!
roll backA2.if because ofbelongs-to.
roll backA1.impl because ofuses.
roll backA1.if because ofbelongs-to.
roll backB1.impl because ofuses.
roll backB1.if because ofbelongs-to.

❑ roll back A!
roll back A1.if, A1.impl, A2.if,
A2.impl because ofcontains.
roll backB1.impl because ofuses.
roll backB1.if because ofbelongs-to.

❑ roll back B!
roll back B1.if, B1.impl, B2.if,
B2.impl because ofcontains.
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Now we add a last operationreplace-all A

to the above scenario. If the designer rolls back
A1.if, A2 has to be rolled back, too, because
replace-all is a complex operation. Other-
wise, the replaced text would remain inA2, but
not inA1.

Note that with partial recovery, a rollback of
A1.if leads to a rollback of all the four proce-
dures inany case. This shows the advantages
of selective recovery.
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